Opuscula Mathematica
Opuscula Math. 32, no. 1 (), 83-89
http://dx.doi.org/10.7494/OpMath.2012.32.1.83
Opuscula Mathematica

Global offensive k-alliance in bipartite graphs



Abstract. Let \(k \geq 0\) be an integer. A set \(S\) of vertices of a graph \(G=(V(G),E(G))\) is called a global offensive \(k\)-alliance if \(|N(v) \cap S| \geq |N(v) \cap S|+k\) for every \(v \in V(G)-S\), where \(0 \leq k \leq \Delta\) and \(\Delta\) is the maximum degree of \(G\). The global offensive \(k\)-alliance number \(\gamma^k_o(G)\) is the minimum cardinality of a global offensive \(k\)-alliance in \(G\). We show that for every bipartite graph \(G\) and every integer \(k \geq 2\), \(\gamma^k_o(G) \leq \frac{n(G)+|L_k(G)|}{2}\), where \(L_k(G)\) is the set of vertices of degree at most \(k-1\). Moreover, extremal trees attaining this upper bound are characterized.
Keywords: global offensive \(k\)-alliance number, bipartite graphs, trees.
Mathematics Subject Classification: 05C69.
Cite this article as:
Mustapha Chellali, Lutz Volkmann, Global offensive k-alliance in bipartite graphs, Opuscula Math. 32, no. 1 (2012), 83-89, http://dx.doi.org/10.7494/OpMath.2012.32.1.83
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.