Opuscula Mathematica
Opuscula Math. 31, no. 3 (), 373-391
http://dx.doi.org/10.7494/OpMath.2011.31.3.373
Opuscula Mathematica

Oscillation theorems concerning non-linear differential equations of the second order



Abstract. This paper concerns the oscillation of solutions of the differential eq. \[ \left[ r\left( t\right) \psi \left(x\left( t\right) \right) f\text{ }( \overset{\cdot }{x}(t))\right]^{\cdot }+q\left( t\right) \varphi (g\left( x\left( t\right) \right), r\left( t\right) \psi \left( x\left( t\right) \right) f(\overset{\cdot }{x}(t)))=0,\] where \(u\varphi \left( u,v\right) \gt 0\) for all \(u\neq 0\), \(xg\left( x\right) \gt 0\), \(xf\left( x\right)\gt 0\) for all \(x\neq 0\), \(\psi \left( x\right) \gt 0\) for all \(x\in \mathbb{R}\), \(r\left( t\right) \gt 0\) for \(t\geq t_{0}\gt 0\) and \(q\) is of arbitrary sign. Our results complement the results in [A.G. Kartsatos, On oscillation of nonlinear equations of second order, J. Math. Anal. Appl. 24 (1968), 665–668], and improve a number of existing oscillation criteria. Our main results are illustrated with examples.
Keywords: second order, nonlinear, differential equations, oscillation.
Mathematics Subject Classification: 34C10, 34C15.
Cite this article as:
E. M. Elabbasy, Sh. R. Elzeiny, Oscillation theorems concerning non-linear differential equations of the second order, Opuscula Math. 31, no. 3 (2011), 373-391, http://dx.doi.org/10.7494/OpMath.2011.31.3.373
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.