Opuscula Mathematica
Opuscula Math. 31, no. 2 (), 173-194
Opuscula Mathematica

The Hardy potential and eigenvalue problems

Abstract. We establish the existence of principal eigenfunctions for the Laplace operator involving weighted Hardy potentials. We consider the Dirichlet and Neumann boundary conditions.
Keywords: Dirichlet and Neumann problems, Hardy potential, principal eigenfuctions.
Mathematics Subject Classification: 35J20, 35R50, 35P99.
Cite this article as:
Jan Chabrowski, The Hardy potential and eigenvalue problems, Opuscula Math. 31, no. 2 (2011), 173-194, http://dx.doi.org/10.7494/OpMath.2011.31.2.173
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.