Opuscula Mathematica

Opuscula Math.
 28
, no. 4
 (), 453-461
Opuscula Mathematica

On periodic and stable solutions of the Lasota equation in different phase spaces



Abstract. We study properties of the Lasota partial differential equation in two different spaces: \(V_{\alpha}\) (Hölder continuous functions) and \(L^p\). The aim of this paper is to generalize the results of [Z. Brzeźniak, A. L. Dawidowicz, On the periodic solution to the von Foerster-Lasota equation, to appear in Semigroup Forum].
Keywords: partial differential equations, periodic solutions, stable solutions.
Mathematics Subject Classification: 35B10, 35B35, 37C75, 47D06.
Cite this article as:
Antoni Leon Dawidowicz, Anna Poskrobko, On periodic and stable solutions of the Lasota equation in different phase spaces, Opuscula Math. 28, no. 4 (2008), 453-461
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI http://dx.doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.