Opuscula Mathematica

Opuscula Math.
 27
, no. 2
 (), 305-331
Opuscula Mathematica

A general boundary value problem and its Weyl function


Abstract. We study the abstract boundary value problem defined in terms of the Green identity and introduce the concept of Weyl operator function \(M(\cdot)\) that agrees with other definitions found in the current literature. In typical cases of problems arising from the multidimensional partial equations of mathematical physics the function \(M(\cdot)\) takes values in the set of unbounded densely defined operators acting on the auxiliary boundary space. Exact formulae are obtained and essential properties of \(M(\cdot)\) are studied. In particular, we consider boundary problems defined by various boundary conditions and justify the well known procedure that reduces such problems to the "equation on the boundary" involving the Weyl function, prove an analogue of the Borg-Levinson theorem, and link our results to the classical theory of extensions of symmetric operators
Keywords: abstract boundary value problem, symmetric operators, Green formula, Weyl function.
Mathematics Subject Classification: 47B25, 47F05, 35J25, 31B10.
Cite this article as:
Vladimir Ryzhov, A general boundary value problem and its Weyl function, Opuscula Math. 27, no. 2 (2007), 305-331
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.