Opuscula Mathematica

Opuscula Math.
, no. 1
 (), 119-125
Opuscula Mathematica

Bipartite embedding of (p,q)-trees

Abstract. A bipartite graph \(G=(L,R;E)\) where \(V(G)=L\cup R\), \(|L|=p\), \(|R| =q\) is called a \((p,q)\)-tree if \(|E(G)|=p+q-1\) and \(G\) has no cycles. A bipartite graph \(G=(L,R;E)\) is a subgraph of a bipartite graph \(H=(L',R';E')\) if \(L\subseteq L'\), \(R\subseteq R'\) and \(E\subseteq E'\). In this paper we present sufficient degree conditions for a bipartite graph to contain a \((p,q)\)-tree.
Keywords: bipartite graph, tree, embedding graph.
Mathematics Subject Classification: 05C35.
Cite this article as:
Beata Orchel, Bipartite embedding of (p,q)-trees, Opuscula Math. 26, no. 1 (2006), 119-125
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.