Opuscula Mathematica

Opuscula Math.
 26
, no. 1
 (), 173-183
Opuscula Mathematica

Stability of solutions of infinite systems of nonlinear differential-functional equations of parabolic type


Abstract. A parabolic initial boundary value problem and an associated elliptic Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations are considered. It is shown that the solutions of the parabolic problem is asymptotically stable and the limit of the solution of the parabolic problem as \(t\to\infty\) is the solution of the associated elliptic problem. The result is based on the monotone methods.
Keywords: stability of solutions, infinite systems, parabolic equations, elliptic equations, semilinear differential-functional equations, monotone iterative method.
Mathematics Subject Classification: 35B40, 35B35, 35J65, 35K60.
Cite this article as:
Tomasz S. Zabawa, Stability of solutions of infinite systems of nonlinear differential-functional equations of parabolic type, Opuscula Math. 26, no. 1 (2006), 173-183
 
Download this article's citation as:
a .bib file (BibTeX), a .ris file (RefMan), a .enw file (EndNote)
or export to RefWorks.

RSS Feed

horizontal rule

ISSN 1232−9274, e-ISSN 2300−6919, DOI https://doi.org/10.7494/OpMath
Copyright © 2003−2017 OPUSCULA MATHEMATICA
Contact: opuscula@agh.edu.pl
Made by Tomasz Zabawa

horizontal rule

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.