TY - JOUR
ID - Blidia2013
LB - Blidia2013
AU - Blidia, Mostafa
AU - Eschouf, Noureddine Ikhlef
AU - Maffray, Frédéric
TI - On vertex b-critical trees
ST - On vertex b-critical trees
JO - Opuscula Math.
JA - Opuscula Math.
JF - Opuscula Mathematica
PY - 2013
VL - 33
IS - 1
SP - 19
EP - 28
DO - http://dx.doi.org/10.7494/OpMath.2013.33.1.19
UR - http://dx.doi.org/10.7494/OpMath.2013.33.1.19
AB - A b-coloring is a proper coloring of the vertices of a graph such that each color class has a vertex that has neighbors of all other colors. The b-chromatic number of a graph \(G\) is the largest \(k\) such that \(G\) admits a b-coloring with \(k\) colors. A graph \(G\) is b-critical if the removal of any vertex of \(G\) decreases the b-chromatic number. We prove various properties of b-critical trees. In particular, we characterize b-critical trees.
KW - b-coloring
KW - b-critical graphs
KW - b-critical trees
SN - 1232-9274
ER -